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New procedures for modeling interactions among dislocations and nanosized cracks within the dynamically evolv-
ing bridging domain method (DEBDM) have been developed. The DEBDM is an efficient concurrent atomistic-to-
continuum approach based on the bridging domain method, where the atomic domain dynamically adapts to encompass
evolving defects. New algorithms for identifying and coarse graining dislocation-induced slip planes have been added
to the method, which previously focused on fracture. Additional improvements include continuously varying BDM
energy-weighting functions, which allow the fine-graining and coarse-graining transitions to occur smoothly over mul-
tiple timesteps, reducing the potential for nonphysical or unstable behavior. Several examples of interacting dislocations
and nanocracks are presented to demonstrate the flexibility and efficiency of the method.
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1. INTRODUCTION

The influence of the interactions of atomic-scale defects on the macroscopic properties of materials is becoming
increasingly important for accurate predictions of material behavior, particularly in extreme conditions and for the
design a materials tailored for specific applications. One difficulty in quantifying defect interactions is the vast range
of spatial and temporal scales that defects such as dislocations, micro-nanocracks, and voids reside in. Not only should
numerical models span the spatial and temporal dimensions of the defects being studied, they also must provide
suitable boundary and initial conditions so that simulation domain boundaries do not act as artificial barriers to defect
propagation. A successful example is the coupled atomistic and discrete dislocation model, where dislocations can
propagate from an atomic domain to a continuum one (Qu et al., 2005; Shilkrot et al., 2004).

Multiscale modeling techniques attempt to address these difficulties by resolving fine-scale and coarse-scale infor-
mation with separate models and linking them either by hierarchical or concurrent coupling schemes. In hierarchical
coupling, fine-scale solutions are averaged to act as a surrogate for the constitutive relationship at the coarse scale.
In concurrent coupling, multiple models are solved simultaneously in different subdomains of a problem geometry.
The objective of this paper is to present recent improvements on an adaptive concurrent modeling scheme where
dislocations and cracks are represented at both the continuum and atomistic scales.

Due to the large body of existing literature focused on concurrently coupling atomic and continuum models, a brief
review of some recent efforts provides context for our approach. One of the earliest methods for coupling molecular
dynamics with finite element calculations was devised by Mullins and Dokainish (1982), where a finite element model
was used to provide a boundary condition for a crack inα-iron. This concept was extended to three levels: continuum,
molecular dynamics, and tight-binding calculations by Abraham et al. (1998) and Broughton et al. (1999) to study
brittle fracture in silicon.
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More recent methods for coupling the atomic and continuum domains include the Arlequin method (Bauman et al.,
2008; Ben Dhia, 1998) and the bridging domain method (Belytschko and Xiao, 2003; Xiao and Belytschko, 2004),
both of which utilize an overlapping coupling region and Lagrange multiplier constraints to enforce compatibility.
Miller and Tadmor (2009) describe these and other coupling methods in detail in their review article.

An important aspect of the coupling method is the ability to exactly reproduce a linear displacement field and
therefore satisfy a patch test. Modifications to the Arlequin method have been developed to eliminate spurious ghost
forces and satisfy the patch test Chamoin et al. (2010). Another similar approach in Fish et al. (2007) is based on a
blending of the continuum stress and atomic forces, where the patch test was demonstrated for a multibody interaction
embedded atom method (EAM) potential.

A second issue that arises in dynamic simulations is the spurious reflection of high-frequency waves at the coupling
interface. This occurs because of the mismatch in impedance between the atomic and continuum regions, due to the
discretization of the continuum. One method that has been largely successful in suppressing spurious reflections
is the quasicontinuum (QC) method (Tadmor et al., 1996). In the QC method, the atomic and continuum scales
are blended by refining the finite element (FE) mesh to atomic length scales at the boundary of the atomic domain
(Miller and Tadmor, 2002; Shenoy et al., 1998). Although the smooth transition of the mesh toward the atomic scale
greatly reduces spurious wave reflections, it comes at the cost of extensive mesh refinement. The bridging domain
method (BDM) has also been shown to suppress spurious wave reflections when the constraint equations for ensuring
compatibility are diagonalized, (Xu and Belytschko, 2008).

The application of the extended finite element method (XFEM) to atomic-to-continuum coupling Gracie and Be-
lytschko (2008, 2011) and modeling of atomic defects (Oswald et al., 2009) has expanded the capability of continuum
methods to incorporate features at the atomic level into the continuum description and reduce the requirement for
mesh refinement at the atomic-to-continuum interface. The XFEM, developed originally to model crack growth with-
out remeshing (Belytschko and Black, 1999; Moës et al., 1999), has been successfully applied to many other types
of problems where interfaces and discontinuities are present, including dislocations (Gracie et al., 2008), shear bands
(Areias and Belytschko, 2006), two-phase fluids (Chessa and Belytschko, 2003), and composites (Belytschko et al.,
2003).

An adaptive concurrent multiscale formulation is proposed where enrichments to the finite element basis functions
allow discontinuities resulting from fracture and slip to be represented within a continuum model. In this formula-
tion, regions characterized by evolving defects, such as dislocation cores and crack tips, are modeled by molecular
dynamics, and the remainder of the domain is simulated by a continuum that admits discontinuities via the XFEM.
Constraints are imposed through Lagrange multipliers that enforce compatibility between the atomic and continuum
levels. In Section 2, the discrete equations of motion for the continuum and atomic regions are derived from La-
grangian mechanics. In Section 3, we describe the coarse and fine-graining algorithms that enable adaptivity in the
BDM. Section 4 gives a smoothed formulation for time-varying weight functions that reduces the potential for un-
physical behavior generated by the model adaptation. Example problems involving the interaction of multiple cracks
and dislocation follow in Section 5, and concluding remarks are given in Section 6.

2. MODEL AND GOVERNING EQUATIONS

The notation for the continuum and atomistic domains areΩC andΩA, respectively. Capitalized Latin subscripts (I, J,
K) denote indices of continuum nodes. Lowercase Greek subscripts (α, β, γ) denote indices of atoms. Boldface indi-
cates a vector or tensor quantity, where vectors will usually be lowercase, and tensors uppercase. The exception will
be uppercase vectors referring to reference (undeformed) coordinates such asX, versus lowercase current coordinates
x. Unless otherwise noted, summation is implied over repeated subscript indices.

2.1 Extended Finite Element Description

The continuum displacement field is approximated with an enriched finite element basis, as described in Belytschko
et al. (2009). This allows continuously varying fields to be described with a standard finite element approximation,
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and discontinuities such as cracks and dislocations to be described through the extended finite element method. The
displacement field is written as

u(X) = NI(X)uI +ΨJ(X)ψJ , (2.1)

whereN represents standard finite element shape functions that exist on all nodes,Ψ is enriched shape functions that
exist only on a subset of the nodes, andu andψ are the nodal degrees of freedom corresponding to the standard and
enriched shape functions, respectively. The discontinuities for cracks and dislocations are introduced to the displace-
ment field through the shifted Heaviside functionΨ(X) developed in Ventura et al. (2009). The Heaviside function is
suitable for well-defined cracks in crystalline solids.

By constructing a vectord to hold all continuum degrees of freedom and a vector of all shape functionsΦ, the
continuum displacement approximation (2.1) can be written more compactly as

u(X) =
[
NI(X) ΨJ(X)

] [uI

ψJ

]
= Φ(X) · d (2.2)

In finite elements which are not enriched,Ψ andψ equal zero and (2.2) reduces to the standard finite element formu-
lation.

2.2 Governing Equations

The Lagrangian of a general atomistic–continuum system with coupling is written as the sum of the atomistic, cou-
pling, and continuum contributions,

LA =
∑
α

w(Xα)
mα

2
vα · vα −W

A
(xα,Xα) (2.3)

LB =
∑

β∈SB

λβ [u(Xβ)− uβ] (2.4)

LC =

∫
ΩC

0

[
(1− w(X))

(
ρ0(X)

2
u̇(X) · u̇(X)−WC(C(X))

)]
dΩC

0 (2.5)

whereLA andLB are respectively the atomistic and coupling (bridging) Lagrangian equations, andLC is the contin-
uum Lagrangian density.WC is the continuum strain energy density. The atomic mass, current position, and velocity
of atomα are given bymA

α , xα, andvα. The functionw(X) is a weighting or blending function that allows for a
continuous transition between continuum and atomistic domains, ranging from zero (fully continuum) and one (fully
atomistic), as shown in Fig. 1. Variables that include the blending weight are written with an overline, e.g.,•. The
set of Lagrange multipliersλβ couple the scales by enforcing the atomic displacementsuβ to equal the continuum
displacementsu(Xβ) for the set of atoms in the bridging domain,SB.

The weighted atomic energyW
A

is a global quantity that is a function of both the atomic potentials and the
blending functionw. The empirical potentialsϕ that estimate the energy of a configuration of atoms are generally

made up of pairwise and multibody terms. Thus,W
A

canbe written

W
A
(xα,Xα) =

∑
β∈Nα

w(Xα,Xβ)ϕ2(rαβ) +
∑

β∈Nα

∑
γ>β

w(Xα,Xβ,Xγ)ϕ3(r̂) + . . . (2.6)

whereNα is the set of atoms interacting with atomα, and bond weights are evaluated at the bond midpoints. Ghost
atoms are used at the edge of the BDM domain to maintain consistent forces. In composite lattices the secondary
lattice atoms should remain free of BDM constraints to allow internal relaxation, as described in Xu et al. (2010).
However, the weighting scheme developed in that paper is limited to nearest-neighbor interactions, so we maintain the
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FIG. 1: Bridging domain method, with ghost atoms

conventional averaging weighting scheme described above and accomplish the same equilibrium effect by applying
forces asymmetrically, i.e., between atoms existing on the primary and secondary sublattices, the force applied is

fα =

{
w(Xα,Xβ)fα α ∈ primarylattice

fα α ∈ secondary lattice
(2.7)

The equations of motion are derived from the Euler-Lagrange equations. For the coupled atomistic-to-continuum
system, the Euler-Lagrange equations are

d

dt

∂LA

∂u̇α

− ∂LA

∂uα

− ∂LB

∂uβ

= 0 (2.8)

∂LB

∂λβ
= 0 (2.9)

d

dt

∂LC

∂u̇(X)
+

∂

∂X
· ∂LC

∂F(X)
+

∂LB

∂u(X)
= 0 (2.10)

After solving, the equations are

w(Xα)mαüα +
∂W

A

∂uα

+ sαβλβ = 0 (2.11)

u(Xβ)− uβ = 0 (2.12)

(1− w(X))

(
ρ0(X)ü(X) +

∂

∂X
· ∂WC

∂F(X)

)
+
∑
I

sIΦI(Xβ)λβ = 0 (2.13)

wheresαβ = δαβ if β is in a coupling domain, and vanishes otherwise, andsI is 1 if nodeI is in the coupling domain
and 0 otherwise.

Note that in Section 4 this formulation is modified in order to introduce transitions between scales which occur
smoothly over time during adaptivity.

2.3 Discrete Equations

The discrete equations are as in Xiao and Belytschko (2004), where the atomic and nodal masses, respectively, are
calculated using

mα = w(Xα)mα, mIJ =

∫
ΩC

0

(1− w)ρ0ΦIΦJdΩ
C
0 (2.14)
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Internal forces for the atomic and continuum domains are calculated using

f
int
α =

∂W
A

∂x
, f

int
I =

∫
ΩC

0

(1− w)
∂ΦI

∂X
· S · FT dΩC

0 (2.15)

Additional forces on the atoms and nodes come from the coupling constraints,

fbdm
α = sαβλβ, fbdm

I = −sIΦI(Xα)λα (2.16)

where the Lagrange multipliersλ come from solving

− 2

∆t
g∗
α = Aαβλβ (2.17)

with Aαβ andg∗
α definedas

Aαβ =
∑
I∈φ

ΦI(Xα)ΦI(Xβ)

mI
+

δαβ

mα

(2.18)

g∗
α = v∗n+1

α − ΦI(Xα)ḋ
∗n+1
I (2.19)

whereφ refersto all nodes whose shape functions support includesX, andδαβ is the Kronecker delta.
External forces for the atomic and continuum domains are calculated using

f
ext
α = w(Xα)fα

f
ext
I =

∫
ΩC

0

(1− w)ρ0ΦIbdΩ
C
0 +

∫
Γt
0

(1− w)ΦItdΓ
t
0

(2.20)

usingthe standard notation for boundary conditions.
The discrete equations are integrated using a velocity Verlet explicit time integration scheme. The Lagrange multi-

pliers act as forces on the coupled atoms and coupled nodes such that the constraint remains satisfied at the following
time step. In order to solve for these unknown constraint forces, a predictor/corrector approach is employed, where
the constraint at the following time step is evaluated with trial velocities, and the Lagrange multipliers needed to force
the constraint to vanish are solved for at each time step [for the full algorithm see Moseley et al. (2012)].

Note that it is common to diagonalize theA matrix from (2.18) using the row-sum technique,

Aα =
∑
β

Aαβ (2.21)

which is more computationally efficient but dissipates energy. However, Xu and Belytschko (2008) have show the
diagonalized form to be more effective in suppressing spurious wave reflections at coupling interfaces.

3. DEBDM ADAPTIVITY

3.1 Domain Decomposition

The model consists of a finite element mesh which covers the entire simulated domainΩ. Atomic domainsΩA overlay
portions of the mesh and the remainder is the continuum domainΩC . The atomic domains are defined in terms of the
mesh elements (“subdomains”) they occupy and are algorithmically divided into three layers, as show in Fig. 2. From
innermost to outermost, the layers are as follows:

i. Defects layer,ΩA
d – The defects layer consists of the atomistic subdomains containing inhomogeneous behavior,

such as broken interatomic bonds or strain localization. These are portions of the atomic domain in which the
displacement field cannot be accurately approximated by FEM/XFEM.
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(1) A crack in graphene (2) A dislocation in a hexagonal lattice

FIG. 2: Atomic decomposition: coupling (blue), buffer (light blue), and defect (red) layers

ii. Buffer layer,ΩA
b – The buffer layer surrounds the defects layer. This region acts to separate the behavior inΩA

d

from the BDM constraints in the coupling layer.

iii. Coupling (BDM) layer,ΩA
c – The coupling layer is the outermost layer of atomic subdomains, where BDM

coupling occurs.

The layer decompositions are a bookkeeping scheme to simplify the adaptation process. As fine-scale behavior
occurs or subsides, subdomains are automatically added or removed fromΩA

d by the fine-graining and coarse-graining
algorithms. Because the buffer and coupling layers are formed aroundΩA

d , this set determines the size and shape of
the fine-scale domain. The depth of the buffer layer should be chosen based on the radius of atomic interaction and
the speed of defect propagation, such that a defect in the defects layer is not constricted by the BDM constraints. Sim-
ilarly, the depth of the coupling layer should be adjusted to ensure a smooth transition between scales with no direct
interaction between fully MD and ghost atoms. In a mesh with very irregularly sized elements, an adjusted algorithm
based on distance from a defect, instead of layers of elements, may be a more efficient means of decomposition.

3.2 Fine-Graining Procedure

Fine-graining transitions elements from the coarse scale (finite element) to the fine scale (molecular dynamics), ex-
panding the atomic region for modeling new fine-scale behavior. The fine-graining procedure (visualized in Fig. 3)
consists of three steps:

(1) Identification (2) Reclassification (3) Transitioning

FIG. 3: Fine-graining procedure, showing coupling (blue), buffer (light blue), and defect (red) layers with newΩA
d

element identified with a black ring
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i. Identify subdomains inΩA
b which contain fine-scale behavior.

ii. Reclassify identified subdomains asΩA
d .

iii. Transition the affected subdomains inΩA
b andΩA

c .

In step 3.2, the buffer layer is checked for behavior indicative of defects. Defects are identified by the existence
of any broken interatomic bonds, or by distorted atomic displacement fields which cannot conform to a continuum. In
order to check for the latter, nodal displacements are approximated using the atomic data by a best-fit solution to

d =
(
Φ̂T · Φ̂

)−1 (
Φ̂T · û

)
(3.1)

HereΦ̂ is a matrix of the evaluated finite element and extended finite element shape functions, such that each row
corresponds toΦ(Xα) from (2.2). Atomα exists in the set of atoms in the support of the shape functions from the
nodes in the element, i.e., the set of atoms existing in the element and its neighbors. Similarly,û is the matrix of
atomic displacements for these atoms. A quality of fit for each elementE in ΩA

b is calculated with theR2 coefficient
of determination,

R2
E = 1−

∑
β∈E (||uβ − u(Xβ)||)2∑

β∈E (||uβ − uE||)2

uE =
1

n

∑
β∈E

uβ

(3.2)

for the set ofn atomsβ in elementE. If the continuum field matches the atomic displacements perfectly,||uβ −
u(Xβ)|| ≡ 0 for all atomsβ ∈ E, and theR2 value for the element equals unity. As the quality of fit degrades, the
R2 value decreases. A poor fit, with anR2 below a given toleranceefg, indicates the continuum field is unable to
model the atomic subdomain with acceptable accuracy, and the element contains fine-scale behavior such as a defect.
Higher (more stringent) values ofefg require the finite elements to more closely match the atoms, resulting in more
fine graining and increasing the size of the fine-scale domain.

Step ii occurs when subdomains have been identified in step i, using either the broken-bond criterion or theR2

error criterion. The identifiedΩA
b subdomains are reclassified toΩA

d , and the buffer and coupling layers are rebuilt to
maintain their specified widths.

Step iii handles the transitions which occur when step ii enlarges the domain. Three different types of transitions
can occur: (1) coupling layerΩA

c to buffer layerΩA
b , (2) continuum domainΩC to coupling layerΩA

c , or (3) continuum
domain directly to the buffer layer. The subdomains reclassified in step ii require no transitioning, as the buffer layer
and the defects layer are both fully atomistic. These layers exist solely for bookkeeping purposes during adaptations.

The first type of transition, fromΩA
c to ΩA

b , involves subdomains which are described at both the molecular
dynamics (MD) and FE scales. Removing the BDM constraints/weights reverts them to fully atomistic. After the
transition these atoms are modeled with the rest of the MD domain.

The other two types of transitions involve finite elements with no corresponding atomic description. To create the
atoms, an atomic lattice is created which spans the element in the reference (undeformed) configuration and aligns
with the reference configurations of other atomic lattices. The positions, velocities, and accelerations of the new atoms
are then interpolated from the current continuum fields,[

xα vα aα
]
= Φ(Xα) ·

[
d ḋ d̈

]
(3.3)

The new atoms now have all the requisite data to participate in the Verlet time integration. For composite lattices such
as graphene, an additional step relaxes the sublattice internal modes. If the transitioning element is becoming part of
the fully atomistic buffer layer, the transition is finished. If the element is transitioning to the BDM coupling region,
new BDM coupling constraints are calculated on the atoms and nodes.
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3.3 Coarse-Graining Procedure

The coarse-graining algorithm attempts to model fine-scale discontinuities using XFEM. Successful coarse graining
reduces the number of atomic degrees of freedom, reducing the computational cost of the simulation. The three-step
coarse-graining procedure (visualized in Fig. 4) is similar to the fine-graining procedure:

i. Attempt to approximateΩA
d subdomains using FEM/XFEM.

ii. Remove identified subdomains fromΩA
d .

iii. Transition the affected subdomains in surrounding layers.

In Step i, the coarse-graining procedure searches for subdomains inΩA
d which can be approximated by the contin-

uum. Subdomains containing a crack tip or dislocation core are excluded from coarse graining, since a coarse-grained
defect can no longer propagate. These are identified by examining neighboring subdomains; if a defect has propa-
gated completely through a subdomain, the neighboring subdomains should also contain a discontinuity. If the defect
enters a subdomain and does not exit, the defect is allowed to develop further. The remainingΩA

d subdomains typ-
ically contain crack faces or dislocation slip planes. Solving an iteratively reweighted linear least-squares fit to the
reference-coordinate midpoints of the broken bonds in these subdomains provides a level set for the discontinuity,

βτ+1 = argminβ

n∑
i=0

wi (β
τ) ||y −Xβτ||2, wi (β) =

1

|yi −Xijβj |
(3.4)

whereβ arethe linear coefficients over a number of iterationsτ. This reweighting scheme helps to mitigate the effect
of outlying points which often occur during fracture as atoms realign along the free surfaces of the crack faces.

Next, the FEM/XFEM degrees of freedom are computed using (3.1), and anR2 quality of fit is computed using
(3.2). Subdomains containing no broken bonds (or where all broken bonds have reformed) are approximated using
only the standard FE description. The algorithm continues ifR2 is above a given toleranceecg for an element. Using
a lower (more forgiving) value forecg will result in more elements being coarse-grained, at the cost of less accurate
approximations included in the coarse scale.

In order to determine if the XFEM enrichments should describe a crack or a dislocation, the XFEM degrees of
freedomψ are examined. In a dislocation the XFEM enrichments provide a jump in displacements along the discon-
tinuity, whereas a crack will additionally experience a jump perpendicular to the discontinuity. Therefore dislocations
in XFEM can be identified as when theψ for the element lie along the same angle as the broken bonds, known as the
Burger’s vector.

(1) Approximation (2) Reclassification (3) Transitioning

FIG. 4: Coarse-graining procedure, showing coupling (blue), buffer (light blue), and defect (red) layers with newΩA
b

element identified with a black ring
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The process in step i is shown in Fig. 5. The midpoints of broken bonds are shown as X’s and are used to compute
the XFEM discontinuity for the highlighted element. After initializing the FEM and XFEM degrees of freedom, the
discontinuous displacement field matches the atomic displacements extremely well, resulting in anR2 value close to
1.0. It can be difficult to achieve such good agreement between scales when the fracture behavior is more complex.

Step ii follows by removing the identified subdomains fromΩA
d , and the buffer and defect layers are modified in

order to maintain their specified widths.
Step iii handles the transitions which occur when step ii reduces the size of the fine-scale domain. Three types of

transitions can occur: (1) coupling layerΩA
c to continuum domainΩC , (2) ΩA

d or ΩA
b to the coupling layer, or (3)

ΩA
d or ΩA

b directly to the continuum domain. Typically the subdomains fromΩA
d become part ofΩA

b , where they are
eligible for fine graining if new behavior occurs. Subdomains which are moved from the defect layer to the buffer
layer require no transitioning as they remain fully atomistic.

The first type of transition, fromΩA
c to ΩC , involves subdomains which are described at both the MD and FE

scales. The atomic lattice in these elements is deleted and the BDM constraints are removed from the nodes; the
elements are now fully continuum.

The other two types of transitions involve fully atomistic subdomains for which a FE description is needed. The
underlying FEM and XFEM nodes are updated as in (3.1), additionally defining the velocities and accelerations for
the nodal degrees of freedom, [

d ḋ d̈
]
=

(
Φ̂T · Φ̂

)−1

Φ̂T
[
û v̂ â

]
(3.5)

The transitioned nodes now have all the necessary data to participate in the next cycle of the standard Verlet time
integration. Once the continuum description is updated, new BDM coupling constraints are calculated for nodes and
atoms as necessary.

While calculating BDM constraints for elements with new XFEM descriptions, some atoms may not conform to
the continuum description, as in Fig. 6. This can disturb or separate the atomic lattice, as the coupling constrain’s
these atoms (shown in red) differently than the MD. These atoms can be identified by calculating theirR2 error,

R2
α =

(||uα − u(Xα)||)2∑
β∈E (||uβ − uE||)2

(3.6)

whereuβ is defined as in (3.2). Atoms with anR2
α greater than a certain toleranceecg

α can be excluded from BDM
constraints to reduce these effects. In this paper,ecg

α= 0.0005.

(1) Before XFEM.R2
E = 0.881399 (2) After XFEM. R2

E = 0.999753

FIG. 5: Computing coarse-grained approximations using broken bonds
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XFEM Discontinuity

Broken Bond Midpoint

Regular Atom

Atom with high R2
α

FEM/XFEM Element

(1) Element in current coordinates

(2) Continuum assumption (3) Resulting atomic BDM forces

FIG. 6: A difficult element to coarse grain

4. SMOOTHLY TRANSITIONING ADAPTIVITY

The adaptive procedure described in Section 3 works well for most simulations; however, problems can arise during
the fine-graining and coarse-graining procedures as subdomains are transitioned between scales. In the method as
presented so far and as in Moseley et al. (2012), these transitions occur instantaneously. Because the coarse and fine
scales cannot provide precisely the same material approximation, the sudden transition between scales can create a
shock on the atoms or nodes as the material adjusts to the new description.

This can be particularly problematic when coarse graining with lower-quality XFEM descriptions, such as the
element in Fig. 6. When transitioning elements such as these to fully continuum, approximating nodal data using (3.5)
can give unexpected results, even when ignoring certain atoms withecg

α . Mismatched atomic velocities can cause the
nodes to be initialized in incorrect directions or magnitudes. Additionally, transitioning these elements from fully
MD to the BDM region and suddenly applying the BDM forces on the atoms can disrupt the lattice, potentially even
creating new, nonphysical defects. Similarly, the atomic lattice created while fine graining with (3.3) may not be the
optimal configuration, and their sudden addition to the simulation can cause disturbances. This can be an important
factor for composite lattices such as graphene, where part of the fine-graining process involves allowing the secondary
lattice to relax to relieve internal stresses, and when running simulations at finite temperatures.

In order to reduce these effects, a smooth transitioning scheme has been developed. In this approach, subdomains
are gradually transitioned between scales over a range of time steps. The gradual transition avoids any major shocks
from differing approximations at different scales. This is accomplished by taking advantage of the BDM weight-
ing functionsw(X), which the BDM uses to ensure the transition in space between scales is smooth. By making
the weights a function of both time and spacew(X, t), the coarse-graining and fine-graining procedures can adapt
smoothly in time.

The time-dependent weighting functions require reevaluation of the Euler-Lagrange Eqs. (2.8), (2.9), and (2.10).
Solving these equations with the new weighting functions gives

w(Xα, t)mαüα +
∂w(Xα, t)

∂t
mαu̇α +

∂W
A

∂uα

+ sαβλβ = 0 (4.1)

u(Xβ)− uβ = 0 (4.2)
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[1− w(X, t)]

(
ρ0(X)ü(X) +

∂

∂X
· ∂WC

∂F(X)

)
− ∂w(X, t)

∂t
ρ0(X)u̇(X) +

∑
I

sIΦI(Xβ)λβ = 0 (4.3)

The additional terms here are added to the coupling constraints (2.16) to create an alternate form of the coupling
forces,

fdebdm
α = fbdm

α − ∂w(Xα, t)

∂t
mαu̇α, fdebdm

I = fbdm
I +

∑
J∈φ

∫
ΩC

0

∂w(t)

∂t
ρ0ΦIΦJdΩ

C
0 ḋI (4.4)

These are used instead of (2.16) and revert to the standard BDM form when smooth transitions are disabled, e.g.,
when(∂w)/(∂t) = 0. The modified forces require a new equation for the Lagrange multipliers [replacing (2.17)],

− 2

∆t
g∗
α = Aαβλβ − hdebdm

α +
∑
I∈φ

ΦI(Xα)h
debdm
I (4.5)

wherehdebdm
α andhdebdm

I aredefined as

hdebdm
α =

u̇α

w(Xα, t)

∂w(Xα, t)

∂t
, hdebdm

I =
ḋI

mI(t)

∑
J∈φ

∫
ΩC

0

∂w(t)

∂t
ρ0ΦIΦJdΩ

C
0 (4.6)

Alternately, since the additional force terms in (4.4) do not depend on the Lagrange multipliersλ, the new force terms
can be applied while calculating the accelerations in velocity Verlet integration. In this way the original equation
(2.17) for the Lagrange multipliers can still be satisfied.

The procedure is illustrated in Fig. 7 for an element being fine grained. In Fig. 7(1) an initial BDM region is shown
in gray, and the element to its right (initially populated with ghost atoms) will be fine grained into the MD domain. The
transition begins in Fig. 7(2). Here the MD domain is expanded to include the new element, but the new atoms have
a BDM weight of zero such that the element is still fully controlled by the FE degrees of freedom. As the simulation
progresses, the weights are gradually readjusted (while maintaining a partition of unity) until they have reached the
desired final state [Fig. 7(4)]. At this point the leftmost element of the bridged domain is weighted fully MD, and
may be treated as a portion of the standard MD domain and be removed from the BDM calculations. Previously, fine
graining involved moving directly from the initial condition in Fig. 7(1) to the final condition in Fig. 7(5). For coarse
graining, the process is simply reversed.

In practice, changing the BDM weights every step is computationally expensive, as the masses in (2.14) and
constraint matrixA in (2.18) need to be recalculated every time the weights change. Therefore, instead of fully recal-
culating these values at every time step during a transition, they are precalculated at a certain number of keyframes
evenly spaced in time through the transition. TheA matrix and masses can then be approximated cheaply and effec-
tively for any time by linearly interpolating between the values at the nearest keyframes.

5. EXAMPLES

5.1 Cracks and Dislocations in Hex Lattice

A two-dimensional sheet of copper atoms in a hexagonal lattice is prestrained 6.15% in thex direction. The sheet is
1200× 900Å, and the left and right sides are fixed in space after applying the prestrain. The atomic potential used is
the Morse potential,

ϕ = De

[(
1− e−β(r−r0)

)2

− 1

]
(5.1)

whereDe = 7.9075 kcal/mol,β = 1.3588 Å
−1

, andr0 = 2.866Å for copper, as in Girifalco and Weizer (1959).
Additionally, a cutoff radiusrc = 5.5Å is implemented. The molar mass is 63.546 g/mol. The atomic domain is ther-
mostatted at1.0◦K using the Berendsen thermostat (Berendsen et al., 1984). Rigid body motion can be conveniently
calculated for the thermostat by examining nodal velocities approximated from atomic data.
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FIG. 7: Smoothly transitioning a bridging domain
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The finite element mesh is a regular mesh 51 elements by 41 elements, totaling 2091 quadrilaterals, modeled with
a constitutive law based on the Cauchy-Born rule. The elements are relatively small; each element is equivalent to a
cluster of approximately 80 atoms. The fine resolution of the FE mesh is intended to prevent a single element from
having to model multiple dislocations, a current and temporary limitation of our XFEM implementation. The time
step for both MD and FE is 2.0 fs, and the problem runs for 30,000 time steps for a total simulation time of 60 ps.
Fine graining and coarse graining are attempted every 150 timesteps.

An initial crack is created at the top-middle of the plate by deleting a band of atoms 5.0Å wide by 25.0Å tall, and
the two finite elements containing the crack are added as the initial subdomains of the core layer of the MD domain.
Because the finite elements are relatively small in this problem, the buffer and coupling layers are each two elements
deep. The coarse-graining toleranceecg = 0.95. For this problem the fine-graining occurs solely based on broken
bonds; the fine-graining toleranceefg is not needed.

Figure 8 shows the model at several points during the simulation. XFEM discontinuities are shown as colored
lines; green lines represent dislocation slip planes, and red lines represent each surface of a crack. It can be seen
that as the crack grows it periodically births dislocations, which propagate away from the crack tip to the edge of the
domain, leaving behind an XFEM slip plane. The method is fairly indifferent to dislocation path; it successfully coarse
grains slip planes even very close to element corners. As the crack tip speed diminishes, the dislocations occur closer
together. New dislocations emanating from the crack tip near times 48.0 and 60.0 ps lie almost directly on top of an
existing slip-plane. Currently, our XFEM implementation does not allow us to have multiple XFEM enrichments for a
single element, so we are not yet able to apply separate enrichments for both dislocations. Because of this limitation,
the algorithm attempts to coarse grain the two neighboring dislocations as a crack, the coarse-graining tolerance is
not met, and the elements along the double dislocation remain in MD. This also limits the ability to model branched
defects using XFEM, meaning much of the crack is forced to stay in MD due to the large number of dislocations
branching from crack surfaces. Future work will alleviate these limitations.

Figures 9 and 10 show additional plots at the end of the simulation, timet = 60.0 ps. Figure 9 shows the atomic
displacements in theY direction for both the adaptive solution and the fully MD solution, such that the dislocation
slip planes are clearly demarcated by discontinuities in the color gradient. Figure 10 plots the atomic kinetic energy,
and the existing dislocation cores can be easily seen as pockets of high energy.

Figure 11 shows the evolution of active degrees of freedom throughout the simulation. The highest number of
atoms occurs near the end of the simulation, with close to 50,000. However, the average number of atoms for the
simulation is only approximately 23,000. If the precise paths of the crack and dislocations were known beforehand, the
minimum number of atoms for this simulation is the same as the number of atoms in a fine-graining-only simulation,
approximately 85,000 atoms. Fully atomic simulation requires approximately 160,000 atoms.

The running times of the adaptive solution versus a fully MD solution are shown in Table 1. “Coupling time”
includes the time to calculate and apply the Lagrange multipliers each time step, as well as the BDM constraint
matrix. “Adapting time” is the time taken to run the fine-graining and coarse-graining algorithms. The majority of the
Adapting time is occupied by the coarse-graining algorithm. “IO time” includes time to calculate output data such
as energy, as well as the time it takes to write all data (such as nodal/atomic displacements, velocities, accelerations)
to disk. In this example, the adaptive solution completes in 58% of the time it takes for the fully MD solution to
complete. The speedup will be larger in most simulations which use larger finite elements (such as in an irregular,
adapted mesh), or when the simulated domain is larger. For example, consider running the same simulation with
the width of the domain doubled. For a fully MD simulation, this would double the number of atoms, doubling the
runtime. Using dynamically evolving BDM (DEBDM), the number of atoms remains unchanged; therefore the MD,
coupling, and adapting times remain the same. Only the FEM time scales up, plus a small increase in IO time. For
such a simulation, the DEBDM approach would run in approximately 38% of the fully MD solution. If the domain
width was quadrupled, DEBDM would finish in 28% of the time. Further benefits come with the application of the
multi-time-step algorithm in Xiao and Belytschko (2004), which allows the use of different time steps for each scale.

In this example, an additional speedup will come from running the coarse-graining algorithm less often; we
have chosen a higher frequency primarily to showcase the coarse-graining algorithms’ capabilities. We anticipate
additional benefits to come simply from more efficient code; our code is a research code, and our implementation
of the complex algorithms detailed above stands to be improved. The code is C++, running single threaded on an
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(1) t = 0.0 ps (initial condition) (2) t = 12.0 ps

(3) t = 24.0 ps (4) t = 36.0 ps

(5) t = 48.0 ps (6) t = 60.0 ps

FIG. 8: Example 5.1. Red lines show XFEM crack surfaces, green lines show XFEM dislocation slip planes
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(1) Adaptive solution (2) Fully MD solution

FIG. 9: Atomic displacements in Y for example 5.1

FIG. 10: Kinetic energy between 0.0 and 0.0001 kcal/mol for example 5.1

Intel Core i7-920. Both the fully MD and the adaptive solution were run using the same code base on the same ma-
chine.

As can be seen in Fig. 12(1), the Berendsen thermostat maintains a relatively constant temperature in the atomic
domain. The energetic input of the thermostat is negligible. However, Fig. 12(2) shows a marked increase in total
system energy, ending approximately 10% above the initial levels. The majority of the energy contributions come from
the potential energies of the MD and FE. The additional energy appears to correspond primarily with the potential
energy associated with dislocation cores and the free surface energy associated with crack surfaces and the edges of
the domain.
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TABLE 1: Running times of adaptive simulation vs fully MD simulation (hh:mm:ss)

Adaptive simulation Fully MD simulation
MD time: 00:19:50 20.76% 02:23:55 87.77%
FEM time: 00:26:27 27.68%
Couplingtime: 00:15:54 16.64%
Adaptingtime: 00:30:46 32.20%
IO time: 00:02:36 02.72% 00:20:03 12.23%
Total time: 01:35:33 02:43:58
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FIG. 12: Temperature and energy during example 5.1
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5.2 Branching Crack in Graphene

A sheet of single-layer graphene is fractured in the armchair direction. The sheet is 300.0× 600.0Å, and is initialized
with a prestrain along they-axis, which varies from 8% to 4%. The top and bottom boundaries are fixed in space.
Atoms are deleted to create an initial crack 45Å long and 5Å wide in an initial atomistic region on the left side of the
plate. The atomic mass for carbon is 12.0107 g/mol, and the atomic potential used is modified Morse from Belytschko
et al. (2002):

ϕ = ϕstretch+ ϕangle, ϕstretch= De

[(
1− e−β(r−r0)

)2

−1

]
, ϕangle=

1

2
kθ (θ− θ0)

2
[
1+ksextic(θ− θ0)

4
]

(5.2)

using the following parameters for graphene from the same source,

r0 = 1.39Å, De = 3.764 eV, β = 2.625 Å
−1

,
θ0 = 2.094 rad, kθ = 5.617 eV/rad2, ksextic = 0.754 rad−4

The buffer and coupling layers have depths of two and one elements, respectively. The adaptivity tolerance for
coarse graining isecg= 0.95, and the fine-graining tolerance is unused in favor of refining solely on broken bonds. The
atomic domain is thermostatted at a relatively high temperature of 50.0 K using the Berendsen thermostat, in order to
ensure branching occurs.

The finite element mesh is a regular mesh 25 elements by 41 elements, for a total of 1025 quadrilaterals. The
constitutive law is based on the Cauchy-Born rule, with an additional step to relax internal lattice modes. Each element
is equivalent to a cluster of approximately 100 atoms. The fine resolution allows us to model the changing angles of the
branching cracks more closely. The time step is 0.75 fs, and the problem runs 7800 time steps for a total simulation
time of 5.85 ps. Fine graining and coarse graining are attempted every 150 time steps, and smooth transitions are
enabled which last for 25 time steps.

Figure 13 shows several time steps during the simulation. Note that in several frames the BDM layer is larger than
usual due to elements being in midtransition. As the simulation evolves, the crack branches once aroundt = 1.13 ps,
and the top crack branches again aroundt = 3.38 ps. The outer cracks provide enough stress relief that the third crack
begins to close aroundt = 4.50 ps, and finishes closing up to the branch shortly before the end of the simulation. At
the end of the simulation everything has been successfully coarse grained, except for the only remaining crack branch.

The smooth transitions play a key role in this example. Cracks in graphene make sharp turns that can be difficult
to coarse grain. When elements containing these angling cracks are coarse grained, assigning nodal velocities and
accelerations using 3.5 can result in unstable, nonphysical movement of the FEM/XFEM degrees of freedom. The
smooth transitioning dampens out this behavior and can prevent the nodes from oscillating wildly and affecting the
simulation. In this problem, this difficulty occurs on the lower branch of the crack, in the two places where it changes
direction. When smooth transitioning is not employed, these nodes obtain nonphysical velocities from the atoms and
experience high oscillations. The oscillations disrupt the surrounding nodes, causing the atomistic region to explode
and the simulation must end. The smooth transitions moderate this. The coarse graining occurs successfully without
disrupting the atomic region. It can be seen that the XFEM degrees of freedom in some of the final elements of the
lower crack still experience nonphysical behavior. This can be improved further with longer (slower) transitions.

Figure 14(1) shows the evolution of active degrees of freedom throughout the simulation. The average number of
atoms present during the simulation is 12,000 atoms. A fully atomic simulation of the model requires approximately
85,000 atoms. The total system energy, shown in Fig. 14(2), also fluctuates over time. The decrease in energy around
t = 4.5 ps, which corresponds to a large drop in atomic degrees of freedom (DOF), supports the belief that the atomic
potential energy associated with free surfaces is responsible for much of the energy fluctuations. At the end of the
simulation, the system energy has risen approximately 5% from the initial conditions.

6. CONCLUSION

Several improvements and updates for the DEBDM method have been presented. The DEBDM method allows propa-
gating and interacting atomic-scale defects to be modeled efficiently by minimal molecular dynamics subdomains. In
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(1) t = 0.0 ps (2) t = 1.13 ps (3) t = 2.25 ps

(4) t = 3.38 ps (5) t = 4.50 ps (6) t = 5.85 ps

FIG. 13: Example 5.2. red lines show XFEM crack surfaces
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this paper, the flexibility and robustness of the method is shown by adding support for dislocations as well as cracks.
Additional research develops the concept of smooth transitions between scales during adaptations. This improves sim-
ulation stability during coarse and fine graining by preventing shocks from being generated by the sudden addition or
removal of atoms.

The examples presented illustrate the efficiency and energy conservation properties of the method. It is shown
that the method provides a significant speedup versus fully MD solutions, while allowing defects to propagate freely
without thea priori knowledge of the solution other multiscale methods require. The energy conservation is shown to
be within acceptable boundaries, and several explanations are given for the energy growth seen.

The techniques and algorithms used in this method allow simulations to combine the advantages of FEM, XFEM,
and MD in a way that is flexible and computationally efficient. The method retains the advantages of multiscale
simulation, in addition to the freedom of adaptivity. These features enable enhanced research in accurate prediction of
material fracture and failure.
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